KARNATAKA'S POWER SECTOR: SOME REVELATIONS

Professor Amulya Reddy

International Energy Initiative 25/5 Borebank Road, Benson Town Bangalore -- 560 046 [Tel/Fax: 554 8426]

COMMON BELIEFS RE: KARNATAKA'S POWER SECTOR

- IPS consumption excessive -- 1/3 to 1/2 of total
- T & D losses are relatively smaller -- about 1/5
- Major power and energy shortages
- IPP's mega-projects will solve problems

COMMON BELIEFS RE: KARNATAKA'S POWER SECTOR (CONTINUED)

- Subsidies are cause of KEB's financial problems
- No solution of generation and distribution possible through public sector
- KEB's employees are inefficient
- Generation performance has deteriorated

KEB'S 1994-95 METERED CONSUMPTION

- ONLY 42% OF THE GENERATION IS METERED
- ONLY HT, LT,
 COMMERCIAL, AEH AND
 DOMESTIC LIGHTS AND
 FANS ARE METERED

KEB'S 1994-95 NON-METERED CONSUMPTION

- TOTAL NON-METERED **CONSUMPTION = AVAILABILITY -**TOTAL METERED CONSUMPTION
- AS MUCH 58% OF THE GENERATION IS NOT METERED
- IPS, BHAGYA JYOTI (BJ), PUBLIC LIGHTING (PL) AND MUSS ARE NOT **METERED**

KEB'S 1994-95 NON-METERED CONSUMPTION

- ONLY SUM OF CONSUMPTION BY IPS, T & D, BHAGYA JYOTI (BJ), PUBLIC LIGHTING (PL) AND MUSS IS KNOWN
- INDIVIDUAL COMPONENTS OF SUM MUST BE GUESSED OR ALLOCATED
- IN PARTICULAR, IPS AND T & D **MUST BE GUESSED**

IPS CONSUMPTION (1994-95)

- IPS CONSUMPTION = NUMBER OF IPS X CONSUMPTION/IPS/YEAR
- IPS CONSUMPTION (KEB) = 960,165 IPS X 7,600 KWH/IPS/YEAR = 7,297 MUS = 37.3% OF AVAILABILITY
- IPS CONSUMPTION (IEI) = 960,165 IPS X 5,250 KWH/IPS/YEAR = 5,040 MUS = 25.8% OF AVAILABILITY

IPS CONSUMPTION AS PER IEI

- BOREWELLS -- 12,000 KWH/IPS/YEAR
- OPEN WELLS -- 2,000 KWH/IPS/YEAR
- CANAL BEDS -- 5,000 KWH/IPS/YEAR
- IN 1994-95, 64% OPEN WELLS + 31% BOREWELLS + 5% CANAL BED IPS
- WEIGHTED AVERAGE = 5,250 KWH/IPS/YEAR

IPS CONSUMPTION AS PER KEB (IEI'S GUESS)

- BOREWELLS -- 10,400 KWH/IPS/YEAR
- OPEN WELLS -- 2,000 KWH/IPS/YEAR
- BETWEEN 1991-96, 33% OPEN WELLS + 67% BOREWELLS
- WEIGHTED AVERAGE = 7,610 KWH/IPS/YEAR

T & D LOSSES

- KEB'S OVER-ESTIMATION OF IPS CONSUMPTION --> KEB'S UNDER-ESTIMATION OF ITS T & D LOSSES
- KEB'S ESTIMATION OF 1984-94 T & D LOSSES --> SUSPECT BECAUSE T & D LOSSES DECREASING WITH LT LOADS INCREASING

T & D LOSSES (CONTINUED)

- T & D LOSSES (KEB) = 3,635 MUS = 18.6% OF AVAILABILITY
- T & D LOSSES (IEI) = 5,946 MUS = 30.4% OF ■ AVAILABILITY

T & D LOSSES (CONTINUED)

- T & D LOSSES = TECHNICAL LOSSES + COMMERCIAL LOSSES (= THEFT)
- IF TECHNICAL LOSSES = 20% THEN COMMERCIAL LOSSES (= THEFT) = 10%

DEMAND

- Over half KEB's consumption is *unmetered*
- KEB exaggerates IPS consumption
- KEB under-reports T & D losses
- Theft (so-called commercial T & D losses) is substantial

DAILY LOAD CURVE

- DAILY LOAD CURVE --> MORNING PEAK (MP) + EVENING PEAK (EP) WITH MP < EP
- IF EP IS MET, THERE SHOULD BE NO TROUBLE WITH MP
- THEN, WHY SOMETIMES KEB LOAD SHEDDING IN MORNING BUT NOT IN EVENING

DAILY LOAD CURVE

- KEB DOES NOT KNOW WHAT MAKES UP ITS DEMAND AT ANY TIME OF DAY
- KEB DOES NOT HOW MUCH DEMAND DUE TO ELECTRICAL DEVICES (MOTORS, WATER HEATERS, LIGHTS, ETC.)

KARNATAKA'S AVAILABLE CAPACITY 1994-95

- INSTALLED CAPACITY = 3,485 MW
- LESS NON-FIRM CAPACITY (IRRIGATION REQUIREMENTS) 0F 8.72% = 3,181 MW
- LESS UNFORESEEN OUTAGES (SPINNING RESERVE) OF 5.47% = 3,007 MW
- LESS MAINTENANCE PROTECTION OF 11.47% = 2,662 MW

KARNATAKA'S AVAILABLE CAPACITY 1994-95

- NON-AVAILABLE CAPACITY = 823 MW
- RESERVE MARGIN = 23.61%
- FIRM AVAILABLE CAPACITY = INSTALLED CAPACITY NON-AVAILABLE CAPACITY = 3,485

 MW 823 MW = 2,662 MW

TOTAL AVAILABLE OR FIRM CAPACITY

- STATE'S AVAILABLE OR FIRM CAPACITY = 2,662 MW
- STATE'S SHARE OF CENTRAL CAPACITY = 510 MW
- TOTAL AVAILABLE OR FIRM
 CAPACITY = 3,172 MW

1994-95 AVAILABLE CAPACITY VS HIGHEST PEAK DEMAND

- TOTAL FIRM CAPACITY = 3,172 MW
- HIGHEST PEAK DEMAND = 3,155 MW
- BUT IN 1994-95, NO RESTRICTION ON DEMAND & NO ENERGY OR POWER CUTS
- HENCE, NO SHORTAGE OF FIRM (AND INSTALLED) CAPACITY

1994-95 AVAILABLE ENERGY VS TRUE ENERGY REQUIREMENT

- FIRM NET ENERGY AVAILABLE = 20,124 GWH
- TRUE ENERGY REQUIREMENT = 19,740 GWH
- BUT, IN 1994-95 --> NO SUPPRESSION OF DEMAND

• HENCE, NO ENERGY SHORTAGE

ABSENCE OF POWER & ENERGY SHORTAGES IN 1994-95

- OPERATIONAL HOURS OF HYDRO STATIONS SHOWED:
- PLANNED OUTAGES = 10.5%
- FORCED OUTAGES = 3.4%
- IDLE HOURS = 6.2%
- SO, HYDRO STATIONS IDLED WHEN FIRM CAPACITY > DEMAND

ABSENCE OF POWER SHORTAGE IN 1994-95

- PEAK DEMAND CAME CLOSE TO THE FIRM CAPACITY (> 2,850 MW) ONLY FOR LESS THAN 31 HOURS (0.36%) IN THE YEAR
- VERY FAR CRY FROM THE CONSTANT CLAIM OF POWER CRISES

WAS THERE A SUPPLY-DEMAND "CRISIS" IN 1994-95?

- There was no energy or power crisis in 1994-95 because
 - Demand < Firm Capacity
 - Energy Requirement < Availbility
 - Hydro Stations were idled for 6% of the time
 - Peak Demand approached Firm Capacity for less than 1% of the time

1994-95 CAPTIVE GENERATION SETS

• TOTAL CAPACITY OF CAPTIVE GENERATION SETS > 1,000 MW = ABOUT ONE-THIRD OF CENTRALIZED INSTALLED CAPACITY

BUT, THEY REMAIN IDLE FOR AS MUCH AS 73% OF THE TIME

HARNESSING OF CAPTIVE GENERATION SETS

- IF THEY ARE CONNECTED TO THE GRID OR TO SELECTED LOADS,
- THEN A LARGE FRACTION OF THEIR CAPACITY CAN BECOME AVAILABLE TO THE STATE.
- THUS, A MAJOR GENERATION
 RESOURCE HAS NOT BEEN
 HARNESSED

PERFORMANCE OF GENERATING STATIONS

- MU/MW WAS ABOUT 4.7 IN THE 1960s AND 1970s BUT DROPPED AFTER 1980 TO 3.9
- AND PLF WAS OVER 60% BEFORE THE 1980s BUT REDUCED TO 30-50% AFTER

GENERATION PERFORMANCE DETERIORATION?

- DECLINE OF MU/MW & PLF OF HYDRO STATIONS NOT DUE TO THE INEFFICIENCY OF THE GENERATING STATIONS
- SUPPLY (GENERATION) HAS TO BE ADJUSTED TO DEMAND
- PLANT PERFORMANCE IS BETTER
 JUDGED BY THE AVAILABILITY
 OF STATIONS

SUPPLY

 Karnataka Power Sector has no strategy for dispatching present source mix (hydro, thermal and diesel and imports)

DIFFERENTIAL PRICING OF ELECTRICITY

- MAXIMUM PRICE --> RS.5.09/KWH (TEMPORARY CONNECTIONS)
- MINIMUM PRICE --> RS.0.02/KWH (IPS)
- WEIGHTED AVERAGE PRICE --> RS.1.06/KWH
- FAR LOWER THAN THE COST OF GENERATION IN A NEW PLANT SUCH AS RAICHUR V AND VI

NET REVENUE FOR EACH USER CATEGORY

- NET REVENUE = REVENUE REALIZED EXPENDITURE INCURRED
- HT, COMMERCIAL, LT & AEH --> PROVIDE CROSS-SUBSIDY
- RECEIVERS OF SUBSIDIES --> MAINLY IP SETS (RS.6,900/IPS)
- NON-AEH AND B.J --> TRIVIAL SUBSIDY
- RS.16/NON-AEH HH AND RS.234/BJ HH

SUBSIDIES NOT RESPONSIBLE FOR KEB'S FINANCIAL PROBLEMS

- IPS LOSSES --> MORE THAN COMPENSATED BY SURPLUSES FROM HT, COMMERCIAL AND LT CONSUMERS
- CROSS-SUBSIDY FROM HT, COMMERCIAL, LT & AEH (RS.878.2 CRORES) > OUTFLOW OF SUBSIDY (RS.689.2 CRORES)
- IPS SUBSIDY --> RS.666.5 CRORES
- KEB SHOULD HAVE HAD AN EXCESS OF RS.196.4 CRORES.

IPS SUBSIDY NOT BEING REIMBURSED TO KEB

• GOVERNMENT GAVE KEB ONLY RS.269.3 CRORES (40%) GRANTS, ETC. VS SUBSIDY OF RS.666.5 CRORES ON IPS

ARREARS & REPAYMENTS

- ARREARS HAVE INCREASED BY RS.66.2 CRORES
- REPAYMENTS OF LOANS -->
 RS.415.2 CRORES = ABOUT 2.25
 TIMES EARNINGS FROM BONDS,
 ETC. (RS.184.7 CRORES)
- KEB MUST NOT REDUCE ITS NET REPAYMENTS, OR DEBT TRAP

HUGE SAVINGS POSSIBLE ON COMMERCIAL T & D LOSSES

- ABOUT RS.190 CRORES SAVINGS ARE POSSIBLE ON COMMERCIAL T & D LOSSES
- THESE LOSSES MAKE KEB'S NET REVENUE NEGATIVE
- BY AVOIDING THEM, KEB CAN BECOME FINANCIALLY VIABLE
- INCREASING THE REVENUE FROM IPS WILL GREATLY IMPROVE VIABILITY.

T & D LOSSES HAVE MAJOR FINANCIAL IMPLICATIONS

- T & D LOSSES NOT EXPLICIT IN KEB BALANCE SHEETS
- MONETARY VALUE OF T & D LOSSES = (ELECTRICITY LOST BETWEEN AVAILABLE ENERGY AND ENERGY SUPPLIED) X (AVERAGE EXPENDITURE PER KWH OF AVAILABLE ENERGY)
- TECHNICAL T & D LOSSES CANNOT BE REDUCED BELOW AN UNAVOIDABLE
 MINIMUM (SAY 20%)

IS KEB EXTRAVAGANT?

- PURCHASE OF POWER --> 50% OF KEB'S COSTS
- COSTS OF PURCHASING POWER INCREASED AFTER 1990-91
- WILL INCREASE EVEN MORE
 AFTER NEW EXPENSIVE PLANTS
 COME ON STREAM

COSTS INCURRED BY KEB ON ITS EMPLOYEES

- SALARIES, ETC. --> ONLY ABOUT 20% OF THE TOTAL COSTS
- COST PER EMPLOYEE ROSE IN STEP WITH WPI UNTIL ABOUT 1983-84

PRODUCTIVITY OF KEB'S EMPLOYEES

- OUTPUT HAS INCREASED BETWEEN 1972-73 AND 1993-94
- CONNECTIONS/EMPLOYEE --> FROM 42 TO 128 (3.04 TIMES)
- CONNECTED LOAD/EMPLOYEE --> FROM 49 KW TO 179 KW (3.65 TIMES)
- ENERGY SUPPLIED/EMPLOYEE --> FROM 108,000 KWH TO 256,000 KWH (2.37 TIMES)

CAUSE(S) OF KEB'S FINANCIAL MESS

- Cross-subsidy > Subsidy to IPS -- subsidies *not* root cause of KEB's financial problems
- HT + LT + AEH categories cross-subsidize IPS (and trivially BJ and non-AEH)
- Net Surplus Revenue (Cross-subsidy Subsidy to IPS) < T & D Losses; hence, T & D losses are responsible for KEB's financial problems

CAUSE(S) OF KEB'S FINANCIAL MESS

- KEB's costs are 50% power purchase and 20% salaries
- KEB's salaries have risen in step with WPI up to about 1983-84
- Productivity of KEB's employees has risen from 1972-73 to 1993-94
- KEB's power purchase costs have jumped with every new source

WHO ARE THE WINNERS?

- Farmers owning IPS
- Politicians/Parties championing these farmers
- Some individuals in KEB make IPS connections a lucrative proposition
- Manufacturers/suppliers of equipment to overcome defective supply

WHO ELSE ARE THE WINNERS?

- KEB blames IPS for its technical & commercial shortcomings
- "Shortages" facilitates malpractices
- Decision-makers use "shortages" to justify their power-expansion policies (foreign private power, trips, etc.)

WHO ARE THE LOSERS?

- HT, LT and Commercial consumers providing cross-subsidy and suffering cuts, load-shedding and/or defective supply
- Non-AEH households
- Unelectrified households

SHAPE OF THINGS TO COME

- Worst Case Scenario I: To honour PPAs, cheap hydro and/or thermal plants will have to be backed down/idled, but even that may not be enough
- Worst Case Scenario II: Industry will delink from KEB when tariffs exceed costs of captive generation -- KEB will be left with no- or low-tariff customers

WHAT IS A CRISIS IN THE POWER SECTOR?

- A "NO-SOLUTION REGIME"
- A SITUATION IN WHICH
 - –(a) NO IMMEDIATEMEASURES WILLREMEDY THE SITUATIONAND

THE WAY FORWARD

- Package of Realistic & Small
 Measures: 11 Institutional + 5 DSM
 + 8 SSM
- Institutional Measures will rescue KEB and KPC
- DSM+SSM package will provide
- about 1,600 MW

INSTITUTIONAL MEASURES -- REDUCTION OF KEB OUTFLOWS

- reduction of IPS subsidies
- reduction of KEB's debts
- reduction of commercial T & D losses (theft)
- reduction of arrears

INSTITUTIONAL MEASURES -- INCREASE OF INFLOWS TO KEB

- grants from government to reimburse IPS subsidies,
- (b) an increase of wheeling revenues
- (c) season-of-year pricing so that the electricity price is higher in high-demand pre-monsoon months and lower in the post-monsoon months

INSTITUTIONAL MEASURES -- IMPROVEMENT OF THE DATABASE

- the census of IPS in open wells, borewells and canal beds,
- the annual consumption of IPS in open wells, borewells and canal beds by metering transformers serving IPS clusters and/or IPS
- the technical component of T & D losses
- annual auditing of electricity consumption by major consumers

INSTITUTIONAL MEASURES -- LOAD MANAGEMENT METHODOLOGY

- the rationale for, and the extent of, load shedding and
- load dispatch from hydroelectricthermal-diesel generation mix.

ENERGY "FUNDAMENTALISM"

- EXCLUSIVE FOCUS ON CONVENTIONAL/FUTURISTIC CENTRALIZED TECHNOLOGIES
- OR NON-CONVENTIONAL RENEWABLE/DECENTRALIZED TECHNOLOGIES
- OR ENERGY SAVING OPTIONS
 THROUGH EFFICIENCY
 IMPROVEMENTS

ROLE OF DECENTRALIZED RENEWABLES & END-USE EFFICIENCY IMPROVEMENTS

- DECENTS & EUEIS, SINGLY OR TOGETHER, CANNOT MEET ENERGY REQUIREMENTS
- CENTRALIZED SOURCES ARE ESSENTIAL
- BUT INCORPORATION OF DECENTS & EUEIs IN SUPPLY MIX REDUCES MAGNITUDE OF CENTRALIZED SOURCES REQUIRED

DEMAND-SIDE MEASURES

- (1) PEAK SHAVING
- (2) EFFICIENT LIGHTING
- (3) SOLAR WATER HEATERS
- (4) EFFICIENT IPS
- (5) EFFICIENT MOTORS

SOLAR WATER HEATERS

- 100 LITRES/DAY UNIT FOR 4-PERSON FAMILY --> RS 10,000 + AVERAGE OF RS 1,500 FOR EXTRA PIPING
- REPLACES 2 KW ELECTRIC GEYSER USED FOR 2.2 HOURS/DAY
- 1,320 KWH/YEAR (RS. 1,980/YEAR AT RS.1.50/KWH) SAVING = 5.8 YEARS PAYBACK

LAWS RE: SWHs IN ISRAEL

• "No new building in which there is a system or installations for supplying hot water shall be built unless the system is a solar installation"

LAWS RE: SWHs IN JERUSALEM

• "If the roof is large enough for a number of solar boilers equal to the number of apartments in the building, an apartment owner may, without the consent of the other apartment owners, install in a reasonable place on the roof of the cooperative house which is common property, a boiler for the solar heating of water, and to install in a reasonable manner the installations relating thereto and the pipes for transporting the water to his/her apartment (provided certain provisions are

DEMAND SIDE MEASURES

DEMAND SIDE MEASURE	SAVING OF	SAVING OF
	ENERGY (GWH)	POWER (MW)
CFLs - DOMESTIC	210	130
CFLs - COMMERCIAL	50	10
SOLAR WATER HEATERS	250	270
IMPROVED IPS	780	320
IMPROVED MOTORS	410	110
TOTAL SAVING	1700	840

SUPPLY-SIDE MEASURES

- (1) ENVIRONMENTALLY SOUND HYDROELECTRIC PROJECTS
- (2) REDUCING T & D TECHNICAL LOSSES
- (3) CAPTIVE GENERATION
- (4) SUGAR COGENERATION
- (5) COGENERATION IN OTHER PRODUSTRIES

SUPPLY-SIDE MEASURES

- (6) BIOMASS-BASED RURAL ENERGY & WATER SUPPLY UTILITIES (REWSUS)
- (7) SMALL HYDEL
- (8) WIND
- (9) PHOTOVOLTAICS

SUPPLY-SIDE MEASURES

SOURCE	GENERATION	GENERATION
	ENERGY (GWH)	POWER (MW)
SMALL HYDEL	460	200
SUGAR COGEN	900	200
WIND	100	50
CAPTIVE GENSETS	1200	270
TOTAL	2660	720

ALTERNATIVE OPTIONS: DSM & SSM

OPTION	ENERGY	POWER
	(MU)	(MW)
DSM	1,700	840
NES	2,660	720
TOTAL	4,360	1,560

REAL LONG-TERM SOLUTION

- shifting to the New Energy Paradigm (NEP)
 - –emphasis on energy services (rather than energy consumption)
 - -Integrated Resource Planning (IRP).

GOAL --> SUSTAINABLE ENERGY

Realistic and Small Measures

PLUS

New Energy Paradigm (Mind-set/Approach)

KARNATAKA'S POWER SECTOR: SUMMARY OF RECOMENDATIONS

Professor Amulya Reddy

International Energy Initiative 25/5 Borebank Road, Benson Town Bangalore -- 560 046 [Tel/Fax: 554 8426]

DEMAND

- Quantify consumption of *all* KEB consumer categories (particularly IPS consumption, Technical and Commercial T & D losses & Theft)
- Energy Audit of HT & LT

SUPPLY

- Ensure that investments on supply expansion are backed by appropriate investments on T & D
- Ensure adequate funds for system improvement to reduce T & D losses

SUPPLY

• Develop **annual** strategy (preferably computerized) for dispatching different sources of supply (hydro, thermal and diesel and imports)

SUPPLY-DEMAND MATCHING

• Publish hourly demand values on an annual basis to determine relationship between demand and firm capacity and between energy requirement and availability

SUPPLY-DEMAND MATCHING

- Publish information on Captive Generation Sets (installed capacity and utilization)
- Incorporate Captive Generation Sets in supply mix

SUPPLY-DEMAND MATCHING

- Obtain disaggregated data on operational hours of power plants (planned and forced outages and idle hours)
- Avoid PPAs that force cheap hydro and/or thermal plants to be backed down/idled

TARIFFS

- Ensure that tariffs do not exceed costs of captive generation to prevent industry from de-linking from KEB and KEB being left with no- or low-tariff customers
- Revise tariffs so that net revenues are positive

TARIFFS

- Give IPS choice between cheap unreliable power and priced reliable power
- Implement tariff increases with improvements of efficiency because consumers are concerned with expenditures rather than with tariffs

TARIFFS

- Since KEB's power purchase costs (over 50% of KEB's expenditures) have jumped with every new source, estimate impact of new projects on power purchase costs
- Ensure that T & D losses are monetized and appear in balance-sheets

ESSENTIAL RESTRUCTURING TO RESCUE KEB

- Independent autonomous regulation
- If government obliges power sector to serve social goals (of access, affordability, etc.), it must compensate for any resulting losses

ESSENTIAL RESTRUCTURING TO RESCUE KEB

- Corporatization to liberate KEB from government and make KEB run on commercial lines
- Independent private power generation
- Transparent democratic functioning

DECISION-MAKING RE: LOAD SHEDDING

- July 1 = Next monsoon (June 15) + a safety margin of 15 days
- Generation that can be expected up to July 1 from each station (hydro, thermal, etc.) in the state + Estimates of imports from other states and Central stations = Grand Total
- Average daily availability (MU/day) = Grand total / Number of days left to the next July 1

DECISION-MAKING RE: LOAD SHEDDING (CONTD.)

• Expected daily requirement (MU/day) = Previous year's average daily consumption + a 10% annual escalation

DECISION-MAKING RE: LOAD SHEDDING (CONTD.)

- If the expected daily requirement > the daily availability, then Load Shedding
- If the expected daily requirement < the daily availability, then no Load Shedding

FOLLOWING RESTRUCTURING COMPONENTS ARE NOT ESSENTIAL

- Removal of all subsidies
- Privatization of (i.e., divesting) generation facilities
- Privatization of Transmission
- Privatizating (i.e., handing over) distribution to private sector

INSTITUTIONAL MEASURES TO RESCUE KEB

- INCLUDE FOLLOWING ELEMENTS BEING URGED BY THE WORLD BANK
- (1) AN INDEPENDENT AUTONOMOUS REGULATORY AGENCY
- (2) TARIFF REVISION SO THAT THE NET REVENUES ARE POSITIVE
- (3) CORPORATIZATION SO THAT KEB RUNS ON COMMERCIAL LINES
- (4) INVOLVEMENT OF INDEPENDENT
 PRIVATE POWER GENERATORS

IS TOTAL RESTRUCTURING PACKAGE OF WB ESSENTIAL FOR SEB REVIVAL?

- NO! REVIVAL DOES NOT APPEAR TO REQUIRE
- (1) REMOVAL OF ALL SUBSIDIES TO USERS
- (2) PRIVATIZATION OF ALL GENERATION
- (3) PRIVATIZATION OF T & D
- (4) LEAVING UTILITIES TO THE MARKET WITHOUT IMPOSING ON THEM OBLIGATION TO SERVE THE COMMUNITY

INTEGRATED RESOURCE PLANNING (IRP)

- It is as suicidal to have *gross* excess capacity as to have *major* shortages
- Emphasize energy services (rather than energy consumption)

INTEGRATED RESOURCE PLANNING (IRP)

- Evolve a Least-Cost Mix (Package) of Centralized and Decentralized Generation and Efficiency Improvements (equivalent to Supply Expansion)
- Integrated Resource Planning is essential

ELECTRICITY IS CRUCIAL

- (1) A WAY OF IMPROVING THE QUALITY OF LIFE
- (2) AN INPUT TO INDUSTRIALIZATION AND AGRICULTURAL DEVELOPMENT
- (3) A PROVIDER OF SERVICES

THE POWER SECTOR IS TOO IMPORTANT

- TO BE LEFT TO ELECTRICAL ENGINEERS AND ELECTRICITY ORGANIZATIONS (KEB, KPC, ENERGY MINISTRY, ETC.)
- EDUCATION, SCIENCE AND TECHNOLOGY INSTITUTIONS, LEGISLATORS, MEDIA, PUBLIC INTEREST GROUPS, NGOS, USER GROUPS FROM INDUSTRY, COMMERCE, ETC., VILLAGE-LEVEL INSTITUTIONS MUST BE ALSO BE INVOLVED

